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The main topic
Consider the Parabolic Anderson model ∂tu(t , x) = 1

2∆u(t , x) + Ẇ (t , x)u(t , x)

u(0, x) = u0(x)

where W (t , x) ((t , x) ∈ R+ × Rd ) is an (1 + d)-dimensional
fractional Brownian sheet with the Hurst parameter (H0, · · · ,Hd )
(0 < H0, · · · ,Hd < 1) define as the mean-zero Gaussian field
with the covariance function

Cov
(

W(s, x),W(t, y)
)

= RH0(s, t)
d∏

j=1

RHj(xj, yj)

for x = (x1, · · · , xd), y = (y1, · · · , yd) and

RH(u, v) =
1
2
{
|u|2H + |v|2H − |u− v|2H} u.v ∈ R
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The main topic

To determine the covarince for the generalized Gaussian
field

Ẇ(t, x) =
∂d+1W

∂t∂x1 · · · ∂xd
(t, x1, · · · , xd)

we conduct the formal computation

Cov
(

Ẇ(s, x), Ẇ(t, y)
)

=
∂2(d+1)

(∂s∂t)(∂x1∂y1) · · · (∂xd∂yd)
Cov

(
W(s, x),W(t, y)

)
=
∂2RH0(s, t)

∂s∂t

d∏
j=1

∂2RHj(xj, yj)

∂xj∂yj
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The main topic

When H > 1/2,

∂2RH(u, v)

∂u∂v
= −1

2
∂2

∂u∂v
{
|u− v|2H} (1)

= H(2H− 1)|u− v|−(2−2H0)

When H = 1/2

∂2R1/2(u, v)

∂u∂v
= −1

2
∂2

∂u∂v
{
|u− v|

}
= δ0(u− v) (2)

The identification (1) can not extended to the setting H < 1/2,
as the function −| · |−(2−2H) is disqualified as the covarince
function for it is not non-negative definite.
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The main topic

On the other hand, (1) and (2) can be unified as

∂2RH(u, v)

∂u∂v
= CH

∫
R

eiλ(u−v)|λ|1−2Hdλ (3)

with the suitable constant CH > 0. We remark that (3) leads to
the requested definite non-negativity.

We extend the identity (3) to the case H < 1/2. Notice that
the covariance function given in (3) is not point-wisely defined
when H < 1/2, nor is it non-negative in any proper sense.
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The main topic

In summary, the Gaussian noise is a generalized
mean-zero Gaussian field with the covariance function

Cov
(

Ẇ(s, x), Ẇ(t, y)
)

= γ0(s− t)γ(x− y)

with the time and space covariance functions given as

γ0(s− t) =

∫
R

eiλ(s−t)µ0(dλ) and γ(x− y) =

∫
Rd

eiξ·(x−y)µ(dξ)

and the time and space spectral measures give as

µ0(dλ) = C0|λ|1−2H0dλ and µ(dξ) = C1

( d∏
j=1

|ξj|1−2Hj

)
dξ
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The main topic

To see why γ0(·) is sign-switching as H0 < 1/2, we make
the following formal computation:∫

R
γ0(u)du = C0

∫
R
|λ|1−2H0

[ ∫
R

eiλudu
]

dλ

= C0

∫
R
|λ|1−2H0δ0(λ)dλ = |0|1−2H0 = 0

The parabolic Anderson equation is interpreted as

u(t, x) = (pt ∗ u0)(x) +

∫ t

0

∫
R

pt−s(y− x)u(s, y)WH(dsdx)

where pt(x) is the density of the Brownian semi-group and the
stochastic integral is in the sense of Skorokhod.
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The main topic
The setting of non-rough noise (i.e., H0, · · · ,Hd ≥ 1/2) has

been well-understood. In this case, the system has a unique
solution under the Dalang’s condition

d−
d∑

j=1

Hj < 1

The current interest is in the case when some of
H0, · · · ,Hd are less than 1/2 (i.e., the noise ẆH(t, x) is rough). In
the (1 + 1)-dimension with H0 > 1/2 and 1/4 < H1 < 1/2, the
equation is solved by Hu-Huang-Nualart-Tindel (preprint),
Chen-Hu-Nualart-Tindel (EJP, accepted) and Huang-Lê-Nualart
(preprint).

Our theorem below shows in particular that the condition
“H1 > 1/4” is too restrictive as H0 > 1/2 and the correct
assumption should be H0 + H1 > 3/4.
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Result in H0 ≥ 1/2

Set J∗ = {1 ≤ j ≤ d; Hj < 1/2},
J∗ = {1 ≤ j ≤ d; Hj ≥ 1/2}, d∗ = #{J∗}, d∗ = #{J∗},

H∗ =
∑
j∈J∗

Hj, H∗ =
∑
j∈J∗

Hj, H = H∗ + H∗ =
d∑

j=1

Hj

Theorem (ALHP(to appear))
Let H0 ≥ 1/2. Under the assumption{

d− H < 1 (Dalang’s condition)
4(1− H0) + 2(d− H) + (d∗ − 2H∗) < 4

the parabolic Anderson equation admits a unique solution u(t, x).
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Main theorem

The major topic is this talk the setting when the Gaussian
noise is rough in time, i.e., H0 < 1/2.

Theorem
Assume H0 < 1/2. Under the assumption

4(1− 2H0) + 2(d − H) + (d∗ − 2H∗) < 2

the parabolic Anderson equation has a unique solution.
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Summary in (1 + 1)-dimension

To see what we get in the above theorems, we consider
the special case when case d = 1. So Ẇ is a (1 + 1)-fractional
noise with Hurst parameter (H0,H). According to our theorems,
the system is solvable under any one of the following
assumptions:

(1). H0,H ≥ 1/2;

(2). H0 ≥ 1/2, H < 1/2 and H0 + H > 3/4;

(3). H0 < 1/2, H ≥ 1/2 and 4H0 + H > 2;

(4). H0 < 1/2, H < 1/2 and 2H0 + H > 5/4.
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Ito-Wiener chaos expansion
For simplicity we assume u0(x) = 1 in the following

discussion. By iterating the mild equation

u(t , x) = 1 +

∫ t

0

∫
R

pt−s(y − x)u(s, y)W H(dsdx)

we obtain the orthogonal decomposition

u(t , x) = 1 +
n∑

n=1

In
(
fn(·, t , x)

)
known as Ito-Wiener chaos expansion. By orthogonality, the
solvability of the mild equation is equivalent to

Eu2(t , x) = 1 +
n∑

n=1

n!‖In
(
fn(·, t , x)

)
‖2 <∞
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Relevance to Brownian Hamiltonian

It can be verified that for each n ≥ 1,

‖In
(
fn(·, t , x)

)
‖2 =

1
(n!)2E 0

[ ∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

where B and B̃ are two independent d-dimensional Brownian
motions starting at 0.

Whenever possible, the Brownian Hamiltonian∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

is defined by approximation. The finiteness of its moment allows
us to carry the approximation out.
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Relevance to Brownian Hamiltonian

By Taylor expansion, therefore, the solvability is equivalent
to the exponential integrability

Eu2(t , x) = E 0 exp
{∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

}
<∞
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Major challenge

The main step is to get the bound

E 0

[ ∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

≤ (n!)θCntn(2H0+H−d)

n = 1,2, · · · , with θ < 1.

When H0 = 1/2 (γ0(·) = δ0(·)),∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr =

∫ t

0
γ
(
B(s)− B̃(s)

)
ds

=

∫
Rd
µ(dξ)

∫ t

0
eiξ·
(

B(s)−B̃(r)
)
ds d

=

∫
Rd
µ(dξ)

∫ t

0
ei
√

2ξ·B(s)ds
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Major challenge
Hence,

E 0

[ ∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

=

∫
(Rd )n

µ(dξ)

∫
[0,t]n

(
E 0

n∏
k=1

ei
√

2ξk ·B(sk )

)
ds

= n!

∫
(Rd )n

µ(dξ)

∫
[0,t]n<

(
E 0

n∏
k=1

ei
√

2ξk ·B(sk )

)
ds

where

[0, t ]n< = {(s1, · · · , sn) ∈ [0, t ]n; s1 < · · · < sn}
and we adopt the simplified notations

µ(dξ) = µ(dξ1) · · ·µ(dξn) and ds = ds1 · · · dsn

in the context whenever it becomes obvious.
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Major challenge

With the price n! for ordering s1 < · · · < sn, we have the
clear evaluation

E 0

n∏
k=1

ei
√

2ξk ·B(sk ) = E 0 exp
{

i
√

2
n∑

k=1

( n∑
j=k

ξj

)
(B(sk )− B(sk−1))

}

= exp
{
−

n∑
k=1

∣∣∣ n∑
j=k

ξj

∣∣∣2(sk − sk−1)

}
which leads to a sharp bound for the n-moment.
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Major challenge

When H0 6= 1/2, we have a formal moment representation

E 0

[ ∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

=

∫
(Rd )n

µ(dξ)

∫
[0,t]2n

( n∏
k=1

γ0(sk − rk )

)

×
(
E 0

n∏
k=1

eiξk ·B(sk )

)(
E 0

n∏
k=1

e−iξk ·B(rk )

)
dsdr

Should the price (n!)2 be paid for the expectations on the
right hand side to be evaluated or bounded?
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Major challenge

The proposal of (n!)2-payment is unjustified: To a degree,
the mass concentrates on the diagonal {s = r}. Consequently,
re-arranging {s1, · · · , sn} should lead to, partially at least, to the
same order of (r1, · · · , rn). Hence, the (n!)2-payment would
un-necessarily increase the power on n!. In H0 < 1/2, it rule out
any possibility for the requested exponetial integrability.
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Major challenge

Alternative treament is to use the bound

0 < E 0

n∏
k=1

eiξk ·B(rk ) ≤ 1

As H0 > 1/2, γ0(·) ≥ 0, so we have

E 0

[ ∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

≤
∫
(Rd )n

µ(dξ)

∫
[0,t]n

( n∏
k=1

∫ t

0
γ0(sk − r)dr

)(
E 0

n∏
k=1

eiξk ·B(sk )

)
ds

which lower the cost on n!, but weaken the integrability (to a
catastrophic level sometimes).
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Major challenge

This practice is not allowed at all when H < 1/2 as γ0(·) is
sign-switching.

In [Chen, AlHP (to appear)], the the challenge is
responded in H0 > 1/2 with a better option

E 0

[ ∫ 1

0

∫ 1

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

≤ Cn
∫
(Rd )n

µ(dξ)

[ ∫
[0,1]n

(
E 0

n∏
k=1

eiξk ·B(sk )

)
ds
]β

with β ≈ 2H0. Then the time permutation is performed on the
right hand with the total cost of roughly (n!)2H0.
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Major challenge

One can prove that this bound does not hold in H0 < 1/2.
In [Chen, AlHP (to appear)], we get the bound

E 0

[ ∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

]n

≤ (n!)θCntn(2H0+H−d)

with (n!)2-payment strategy. Sadly, θ > 1 in the above bound.
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Solving the equation: H0 < 1/2
To improve the bound, we first establish the following

decomposition for H0 < 1/2 under the assumptions in our
theorem

Lemma

∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

= H0

∫
Rd
µ(dξ)

∫ t

0

{
s−(1−2H0) + (t − s)−(1−2H0)

}
eiξ·(Bs−B̃s)ds

+
H0(1− 2H0)

2

∫
Rd
µ(dξ)

∫ t

0

∫ t

0

×
[
eiξ·Bs − eiξ·Br

][
e−iξ·B̃s − e−iξ·B̃r

]
|s − r |2−2H0

drds
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Remarks on this lemma

1. This lemma is partially inspired by a deterministic
covariance decomposition in Chen, L., Hu, Y. Z., Kalbasi, K. and
Nualart, D (PTRF, to appear)

2. The first term is in 1-multiple integral whose n-moment
can be well bounded by the n!-payment plan.

3. As for the second term, by symmetry it is equal to∫
Rd
µ(dξ)

∫ t

0

∫ t

0

[
eiξ·Bs − eiξ·Br

][
e−iξ·B̃s − e−iξ·B̃r

]
|s − r |2−2H0

drds

= 2
∫
Rd
µ(dξ)

∫ t

0

∫ t

0

eiξ·Bs
[
e−iξ·B̃s − e−iξ·B̃r

]
|s − r |2−2H0

drds
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Solving the equation: H0 < 1/2

Proof. By a simple algebra∫ t

0

∫ t

0
γ0(s − r)γ

(
B(s)− B̃(r)

)
dsdr

=

∫
Rd+1

µ0(dλ)µ(dξ)

∫ t

0

∫ t

0
eiλ(s−r)eiξ·Bse−iξ·B̃r drds

=

∫
Rd+1

µ0(dλ)µ(dξ)

∫ t

0

∫ t

0
eiλ(s−r)eiξ·Bse−iξ·B̃sdrds

−
∫
Rd+1

µ0(dλ)µ(dξ)

∫ t

0

∫ t

0
eiλ(s−r)eiξ·Bs

[
e−iξ·B̃s − e−iξ·B̃r

]
drds

The first term on the right hand side is identified with the first
term in the decomposition.
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Solving the equation: H0 < 1/2

As for the second term, for any N > 0∫
[−N,N]×Rd

µ0(dλ)µ(dξ)

∫ t

0

∫ t

0
eiλ(s−r)eiξ·Bs

[
e−iξ·B̃s − e−iξ·B̃r

]
drds

=

∫
Rd
µ(dξ)

∫ t

0

∫ t

0

(∫ N

−N
eiλ(s−r)|λ|1−2H0dλ

)
eiξ·Bs

[
e−iξ·B̃s − e−iξ·B̃r

]
drds

= N1−2H0

∫
Rd
µ(dξ)

∫ t

0

∫ t

0

sin N(s − r)

s − r
eiξ·Bs

[
e−iξ·B̃s − e−iξ·B̃r

]
drds

−
∫
Rd
µ(dξ)

∫ t

0

∫ t

0

(∫ N

−N

sin
(
λ(s − r)

)
(s − r)|λ|2H0

dλ
)

eiξ·Bs
[
e−iξ·B̃s − e−iξ·B̃r

]
drds

Our claim follows from the fact that the first term goes to zero as
N →∞.
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Solving the equation: H0 < 1/2
To prove our main theorem, all we need is to establish a

good n-moment bound for the second term in the
decomposition, which is the constant multiple of

Qt =

∫
Rd
µ(dξ)

∫ t

0

∫ t

0

eiξ·Bs
[
e−iξ·B̃s − e−ξ·B̃r

]
|s − r |2−2H0

drds

By assumption there is a β > 0 such that

1− 2H0 < β <
1
2
− 2(d − H) + (d∗ − 2H∗)

4

All we need is the bound

E 0Qn
t ≤ (n!)(d−H)+2βCntn(2H0+H−d)

as (d − H) + 2β < 1.
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Solving the equation: H0 < 1/2

We have Qt
d
= t2H0+H−dQ1. We may let t = 1, i.e.,

E 0Qn
1 ≤ (n!)(d−H)+(1−2H0)Cn

We now start the moment computation. Notice that

Q1 = 2
∫
Rd
µ(dξ)

∫ 1

0

∫ 1

0

eiξ·(x+Bs)e−iξ·(x̃+B̃s) sin2 ξ·(B̃s−B̃r )
2

|s − r |2−2H0
drds
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Solving the equation: H0 < 1/2

E 0Qn
1 = 2n

∫
(Rd )n

µ(dξ)

∫
[0,1]n

(
E 0

n∏
k=1

eiξk ·Bsk

)

×
{∫

[0,1]n

(
E 0

n∏
k=1

e−iξ·Bsk|sk − rk |−(2−2H0) sin2 ξk · (Bsk − Brk )

2

)
dr
}

ds

≤ 2n
∫
(Rd )n

µ(dξ)

∫
[0,1]n

(
E 0

n∏
k=1

eiξk ·Bsk

)

×
{∫

[0,1]n

(
E 0

n∏
k=1

|sk − rk |−(2−2H0) sin2 ξk · (Bsk − Brk )

2

)
dr
}

ds
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Solving the equation: H0 < 1/2

Picking 1− 2H0 < β1 < β∫
[0,1]n

( n∏
k=1

|sk − rk |−(2−2H0)

)(
E 0

n∏
k=1

sin2 ξk · (Bsk − Brk )

2

)
dr

≤
∫
[0,1]n

( n∏
k=1

|sk − rk |−(2−2H0)

)(
E 0

n∏
k=1

∣∣∣ sin
ξk · (Bsk − Brk )

2

∣∣∣2β)dr

≤
( n∏

k=1

|ξk |2β
)
E 0

(
sup

0≤r ,s≤1

|Bs − Br |
|s − r |β1/(2β)

)2βn

×
∫
[0,1]n

( n∏
k=1

|sk − rk |−(2−2H0−β1)

)
dr
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Solving the equation: H0 < 1/2

By the fact that 2− 2H0 − β1 < 1,∫
[0,1]n

( n∏
k=1

|sk − rk |−(2−2H0−β1)

)
dr ≤ Cn

So we have the bound

E 0Qn
1 ≤ CnE 0

(
sup

0≤r ,s≤1

|Bs − Br |
|s − r |β1/(2β)

)2βn

×
∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)∫

[0,1]n

(
E 0

n∏
k=1

eiξk ·Bsk

)
ds
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Solving the equation: H0 < 1/2
Notice 0 < β1/(2β) < 1/2. By the Hölder continuity of the

Brownian motion and by Gaussian tail bound

E 0

(
sup

0≤r ,s≤1

|Bs − Br |
|s − r |β1/(2β)

)2βn

≤ (n!)βCn

Therefore,

E0Qn
1 ≤ (n!)βCn

∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)∫

[0,1]n

(
E 0

n∏
k=1

eiξk ·Bsk

)
ds

It remains to prove∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)∫

[0,1]n

(
E 0

n∏
k=1

eiξk ·Bsk

)
ds

≤ (n!)(d−H)+βCn
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Solving the equation: H0 < 1/2
Write

In(t) =

∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)∫

[0,t]n

(
E 0

n∏
k=1

eiξk ·Bsk

)
ds

Then In(t) = tn(1−(d−H)−β)In(1) and

In(t) = n!

∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)∫

[0,t]n<

(
E 0

n∏
k=1

eiξk ·Bsk

)
ds

= n!

∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)

×
∫
[0,t]n<

exp
{
− 1

2

n∑
k=1

∣∣∣ n∑
j=k

ξj

∣∣∣2(sk − sk−1)

}
ds
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Solving the equation: H0 < 1/2

Hence,∫ ∞
0

e−t In(t)dt = n!

∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
)

×
n∏

k=1

∫ ∞
0

e−t exp
{
− 1

2

∣∣∣ n∑
j=k

ξj

∣∣∣2t
}

dt

= n!

∫
(Rd )n

µ(dξ)

( n∏
k=1

|ξk |2β
) n∏

k=1

{
1 +

1
2

∣∣∣ n∑
j=k

ξj

∣∣∣2}−1
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Solving the equation: H0 < 1/2

Notice 0 < 2β < 1 and write ηn =
∑n

j=k ξj (1 ≤ j ≤ n).
Under the convention ηn+1 = 0

n∏
k=1

|ξk |2β =
n∏

k=1

|ηk − ηk+1|2β ≤
n∏

k=1

{
|ηk |2β + |ηk+1|2β

}
≤
∑

l

n∏
k=1

|ηk |2l(k)β ≤ 2n
∑

l

n∏
k=1

{
1 +

1
2
|ηk |2

}l(k)β

≤ 2n
∑

l

n∏
k=1

{
1 +

1
2
|ηk |2

}2β ≤ 2n3n
n∏

k=1

{
1 +

1
2

∣∣∣ n∑
j=k

ξj

∣∣∣2}2β

where the summation is over all maps l : {1, · · · ,n} −→ {0,1,2}
so the number of its terms is at most 3n.
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Solving the equation: H0 < 1/2

Summarizing our computation,∫ ∞
0

e−t In(t)dt ≤ n!Cn
∫
(Rd )n

µ(dξ)
n∏

k=1

{
1 +

1
2

∣∣∣ n∑
j=k

ξj

∣∣∣2}−(1−2β)

≤ n!Cn

where the last step follows from the fact that

1− 2β >
2(d − H) + (d∗ − 2H∗)

2

and the lamma stated later.
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Lemmas on integrability

On the other hand,∫ ∞
0

e−t In(t)dt = In(1)

∫ ∞
0

e−t tn(1−(d−H)−β)dt

= In(1)Γ
(
1 + n(1− (d − H)− β)

)
By Stirling formula,

In(1) ≤ (n!)(d−H)+βCn
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Further development

One of important properties in SPDE is the intermittency.
It described by the asymptotic behavior

logEum(t , x) (t →∞) m = 2,3, · · ·

For H0 > 1/2, the answer (Chen, AlHP (to appear)) to this
question is

lim
t→∞

t−
2H0+H−d
1−(d−H) log Eum(t , x) =

(1
2

) 1
1−(d−H)

m(m − 1)
1

1−(d−H)E(H)

where E(H) > 0 is a constant given in terms of variation.
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Further development

Notice that 2H0+H−d
1−(d−H)

< 1 as H0 < 1/2. Does the logarithmic
moment

logEum(t , x)

has a sub-linear growth rate when H0 < 1/2 as t →∞? The
truth is that

lim
t→∞

1
t

logEu2(t , x) = κ(H)

for some constant 0 < κ(H) <∞.

More problems need to be answered in the future on the
intermittency in the setting of H0 < 1/2.
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Lemmas on integrability

Lemma ∫
(Rd )n

µ(dξ)
n∏

k=1

{
1 +

1
2

∣∣∣ n∑
j=k

ξj

∣∣∣2}−κ ≤ Cn

for any

κ >
2(d − H) + (d∗ − 2H∗)

2

To this end, we first prove
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Lemmas on integrability

Lemma
Let f (ξ) and g(ξ) be two non-negative definite functions on Rd .
Then for any ξ ∈ Rd ,∫

Rd
f (η)g(η − ξ)dη ≤

∫
Rd

f (η)g(η)dη

Proof. Let µf (dx) and µg(dx) be the spectral measures of f and
g, respectively. Assume µf (dx) = f̂ (x)dx and µg(dx) = ĝ(x)dx
for some f̂ , ĝ ≥ 0.∫

Rd
f (η)g(η − ξ)dη =

∫
Rd

eiξ·x f̂ (x)ĝ(x)dx

≤
∫
Rd

f̂ (x)ĝ(x)dx =

∫
Rd

f (η)g(η)dη
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Lemmas on integrability

We now prove the bound∫
(Rd )n

µ(dξ)
n∏

k=1

{
1 +

1
2

∣∣∣ n∑
j=k

ξj

∣∣∣2}−κ ≤ Cn

We may assume that κ ≤ 2 in the following proof.

Recall that J∗ = {1 ≤ j ≤ d ; Hj ≥ 1/2} and
J∗ = {1 ≤ j ≤ d ; Hj < 1/2}.
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Lemma on integrability

In the notation ξk = (ξk ,1, · · · , ξk ,d ), ξ+k = (ξk ,j)j∈J∗ and
ξ−k = (ξk ,j)j∈J∗

µ(dξ) = Cn
n∏

k=1

( d∏
j=1

|ξk ,j |1−2Hj

)
dξk

= Cn
n∏

k=1

(∏
j∈J∗

|ξk ,j |1−2Hj

)(∏
j∈J∗

|ξk ,j |1−2Hj

)
dξk

= Cn
n∏

k=1

q∗(ξ+k )q∗(ξ−k )dξ+k dξ−k (say)
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Lemmas on integrability
By translation,∫

(Rd )n

n∏
k=1

(
1 +

1
2

∣∣∣ n∑
k=j

ξk

∣∣∣2)−κµ(dξ)

= Cn
∫
(RJ∗×RJ∗ )n

{ n∏
k=1

(
1 +

1
2
|ξ−k |

2 +
1
2
|ξ+k |

2
)−κ}

×
n∏

k=1

q∗(ξ+k − ξ
+
k−1)q∗(ξ−k − ξ

−
k−1)dξ+k dξ−k

≤ Cn
∫
(RJ∗×RJ∗ )n

{ n∏
k=1

(
(1 + |ξ−k |

2)κ/2 + |ξ+k |
κ
)−2
}

×
n∏

k=1

q∗(ξ+k − ξ
+
k−1)q∗(ξ−k − ξ

−
k−1)dξ+k dξ−k
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Lemmas on integrability

Notice that the function q∗(η) (η ∈ RJ∗) is non-negative
definite with spectral density q̂∗(x) which appears to be the
constant multiple of∏

j∈J∗

|xj |−(2−2Hj ) x = (xj)j∈J∗ ∈ RJ∗

Also notice that for any a > 0, f (η) = (a + |η|κ)−1 (η ∈ RJ∗) is
non-negative definite, which appears to the characteristic
function of a κ-stable and radius-symmetric process at a
independent exponential time. Consequently, the function
(a + |η|κ)−2 is non-negative definite.
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Lemmas on integrability

By the previous lemma, for any ζ ∈ RJ∗

∫
RJ∗

(a + |η|κ)−2q∗(η − ζ)dη ≤
∫
RJ∗

(a + |η|κ)−2q∗(η)dη

= a−2+2κ−1(d∗−H∗)

∫
RJ∗

(1 + |η|κ)−2q∗(η)dη

This implies that for any a1, · · · ,an > 0,∫
(RJ∗ )n

( n∏
k=1

(ak + |ξ+k |
κ)−2

) n∏
k=1

q∗(ξ+k − ξ
+
k−1)dξ+k

≤ Cn
n∏

k=1

a−2+2κ−1(d∗−H∗)
k
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Lemmas on integrability

Take
ak = (1 + |ξ−k |

2)κ/2

By Fubini’s theorem,∫
(Rd )n

n∏
k=1

(
1 +

1
2

∣∣∣ n∑
k=j

ξk

∣∣∣2)−κµ(dξ)

≤ Cn
∫
(RJ∗ )n

( n∏
k=1

(1 + |ξk |2)−κ+(d∗−H∗)

) n∏
k=1

q∗(ξk − ξk−1)dξk

Here we use ξk instead of ξ−k on the right hand side for notation
simplification.
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Lemmas on integrability
Notice that

n∏
k=1

q∗(ξk − ξk−1) =
n∏

k=1

∏
j∈J∗

|ξk ,j − ξk−1,j |1−2Hj

≤
n∏

k=1

∏
j∈J∗

(|ξk ,j |1−2Hj + |ξk−1,j |1−2Hj )

≤
∑

l

n∏
k=1

∏
j∈J∗

|ξk ,j |l(k ,j)(1−2Hj )

where the summation is taken for all maps l :
{1, · · · ,n} × J∗ −→ {0,1,2}n with∑

(k ,j)∈{1,··· ,n}×J∗

l(k , j) = n

and therefore the number of the terms is at most 2nd∗.
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Lemmas on integrability

Therefore, all we need to prove is that∫
RJ∗

(
1 + |ξ|2

)−κ+(d∗−H∗)
∏
j∈J∗

|ξj |l(1−2Hj )dξ <∞ l = 0,1,2

Notice that 1− 2Hj > 0 for each j ∈ J∗. So only the case l = 2
needs to be checked. Indeed, by spherical substitution∫

RJ∗

(
1 + |ξ|2

)−κ+(d∗−H∗)
∏
j∈J∗

|ξj |2(1−2Hj )dξ

= C
∫ ∞

0

(
1 + ρ2)−κ+(d∗−H∗)

ρ2(d∗−2H∗)ρd∗−1dρ <∞
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Thank you!
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